OPTIMIZING PEDESTRIAN SYSTEM FUNCTION AND EXPERIENTIAL QUALITY WITH INTEGRATED NETWORK AND AGENT-BASED SIMULATION MODELS

Jeremy Wimpey, PhD; Nathan Reignier, PhD
Talk Outline

- Intro
 - Why model?
 - Setting
- Methods
 - GIS
 - Agent based
 - Validation
- Results
- Discussion
- Questions
Why Model?

- Complex and large systems
- Facilitate monitoring
- Scenario testing (what if?)
- Allow us to be proactive
Why Model?
Why Multiscalar Modeling?

- Large, complex, high use site
 - Highly structured activities
 - Dense use
 - Under design/construction
- Study:
 - Alternatives
 - Scenarios
 - Scheduling
Setting
Site Overview

- ~15,000 Acres
- 40-100K Visitors
- Multi Modal System
- 35+ Miles of Hiking Trail
Research Goals

- Develop multi-scalar systems for modeling outdoor recreation
- Evaluate system performance and experiential quality at multiple scales (PPV, PAOT, LOS)
- Explore ability of models to inform user management and site design for optimization of above
 - Scenario testing
 - Alternatives development
Model Overview

GIS network model
Model Overview

GIS network model

Computational model
Model Overview

- GIS network model
- Computational model
- Simulation model
Model Iteration

GIS network model

Computational model

Simulation model
Model Iteration

- Stochastic Variables
 - Travel Speed
 - Behaviors
 - Distributions
- Sensitivity Analyses
- Propagation
 - Delay
Scenario Testing

GIS network model

Computational model

Simulation model
Scenario Testing

- **Operational**
 - Move-in/out
 - Camp wide events
 - Typical day

- **Emergency**
 - Evacuation
 - Response

- **Alternatives**
 - Closures & additions
GIS: Macro Scale Model

- Cleaned network and coded:
 - Origins
 - Destinations
 - Linkages
GIS: Macro Scale Model

- Network Analyst:
 - Routes (alternatives)
 - Scheduling
 - Aggregate measures (segment loading)
GIS: Segment Analyses

- Segment loading
- Throughput needs
- Critical linkages
- Inform computational model
- Visualize demand
GIS: Segment Analyses
Computational: Scheduling
GIS: Macro Scale Model

- Analysis & outputs used to:
 - Optimize programming
 - Order of destinations
 - Start times, duration
 - Evaluate alternatives and scenarios
 - Locate critical links
 - Congestion/delay
 - Aggregate statistics
 - Multi modal needs
 - Create inputs for micro & meso scale models
Simulation: Micro Scale Model

- Linkage and junction level
 - Utilize social force model (PTV/Helbing)
 - Populated from macro model outputs
- Used to evaluate:
 - Site design
 - Experiential metrics
 - Crowding:
 - PPV, PAOT, LOS
 - Scenarios
Simulation: Micro Scale Model
Micro Model Development

- Pedestrian generation
 - Classes
 - Behaviors
 - Appearance*

- Routing
 - Static
 - Dynamic
Simulation Model Visualization
Simulation Model Outputs

- Measurement areas
- Agent specific
Measurement Area Output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Junction</th>
<th>Elbow</th>
<th>Flow Rate (n/min/ftwidth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Volume</td>
<td>N</td>
<td>14.18</td>
<td>9.63</td>
<td>8.62</td>
</tr>
<tr>
<td>Pedestrians N</td>
<td>N</td>
<td>17.24</td>
<td>15.47</td>
<td>7.73</td>
</tr>
<tr>
<td>Density</td>
<td>n/m²</td>
<td>0.24</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td>ft²/n</td>
<td>13.70</td>
<td>10.61</td>
<td></td>
</tr>
<tr>
<td>Desired Speed</td>
<td>km/h</td>
<td>4.49</td>
<td>4.56</td>
<td>4.09</td>
</tr>
<tr>
<td>Speed</td>
<td>km/h</td>
<td>3.71</td>
<td>3.69</td>
<td>3.38</td>
</tr>
<tr>
<td>Total Delay</td>
<td>ss</td>
<td>1.91</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>Total Distance</td>
<td>ss</td>
<td>12.07</td>
<td>15.96</td>
<td></td>
</tr>
</tbody>
</table>
Measurement Area Output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Junction</th>
<th>Elbow</th>
<th>Flow Rate (n/min/ft/width)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Volume</td>
<td>N</td>
<td>14.18</td>
<td>9.63</td>
<td>8.62</td>
</tr>
<tr>
<td>Pedestrians N</td>
<td>N</td>
<td>17.24</td>
<td>15.47</td>
<td>7.73</td>
</tr>
<tr>
<td>Density</td>
<td>n/m²</td>
<td>0.24</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td>ft²/n</td>
<td>13.70</td>
<td>10.61</td>
<td></td>
</tr>
<tr>
<td>Desired Speed</td>
<td>km/h</td>
<td>4.49</td>
<td>4.56</td>
<td>4.09</td>
</tr>
<tr>
<td>Speed</td>
<td>km/h</td>
<td>3.71</td>
<td>3.69</td>
<td>3.38</td>
</tr>
<tr>
<td>Total Delay</td>
<td>ss</td>
<td>1.91</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>Total Distance</td>
<td>ss</td>
<td>12.07</td>
<td>15.96</td>
<td></td>
</tr>
</tbody>
</table>

Flow Rate: 8.62 n/min/ft/width
Indicators & Standards of Crowding

<table>
<thead>
<tr>
<th>PAOT</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>people at one time</td>
<td>people per view</td>
</tr>
</tbody>
</table>
Agent Specific Output

- Speed
- Travel time
- Delay
- Encounters
- Interaction with:
 - Other agents
 - Landscape
 - Soundscape
Simulation Model Expansion
Simulation Model Expansion
Simulation Model Expansion

In development:
- Additional complexity
- Mixed activities:
 - Dwell and activity times
- Multiple scenarios
Discussion

- Management and planning:
 - Powerful multi-faceted tools for analyses of visitor movement
 - Dovetail well with existing bodies of traffic and normative research on crowding and use of parks
Moving forward:

- Further integration with:
 - Multi modal models
 - Automation of iteration
- Meso model development
 - Activities and behaviors
- Model validation
Acknowledgments

- US DOT – RITA
- University Transportation Centers
- UVM Transportation Research Center
- UVM Spires of Excellence program
- Boy Scouts of America
- Trinity Works, LLC
- Sarah Linden, Trinity Works & BSA
- Tobias Kretz, PTV
Questions & Discussion