An Integrated **GPS-based Mobile Data Collection** and **Web-based GIS Platform** for Supporting GDOT’s Pavement Rehabilitation and Design Processes

Zhaohua Wang
Georgia Institute of Technology

Steve Pahno, Teague Buchanan
Georgia Department of Transportation

May 8, 2014
Acknowledgement

• Research project 10-28 sponsored by the Georgia Department of Transportation (GDOT)

• Other key persons
 – GDOT
 • Abdallah Jubran (AJ), State Pavement Engineer
 • James Turner, Pavement Test Engineer
 • Scott Gallman, Pavement Evaluation Engineer (retired)
 • Gregory Leggett, Pavement Evaluation Engineer
 • Timothy Poe, Enterprise GIS Team Leader
 • Sanjeev Devarapalli, Software Architect
 • Joshua Ross, (former) GIS Developer
 • Anand Matam, GIS Developer
• Other key persons
 – Georgia Tech
 • Yichang (James) Tsai, Associate Professor, CO-PI
 • Jian (Roger) Zhao, Research Associate, Software Developer
 • Harini Kumar, Research Associate, Software Developer
 • Balasubramanyam Ganapathi, Research Associate, Software Developer
 • Sundararajan Sarangan, Research Associate, Software Developer
 • Aditya Kadam, Research Associate, Software Developer
 • Mihir Shah, Research Associate, Software Developer
Outline

- GDOT IT development procedures
- Engineering background
- System architecture
- GPS-based mobile data collection
- A web-based GIS platform
 - Coring data management
 - Extraction and analysis of historical pavement conditions
- Recommendations for future enhancement
Development Procedures (cont’d)

- **Reviewed and Approved by OIT**
- **Reviewed and Approved by OIT**
- **Reviewed and Approved by OIT**
- **GaTech performed refinement**
- **Reviewed and Approved by OIT and OMAT**

Business Requirements
- Discussed by OMAT & GaTech
- Reviewed and Approved by OIT

Architecture Design
- Existing data sources and requirements from OIT
- Reviewed and Approved by OIT

Database Design
- Discussed by OMAT & GaTech

System Development
- Development environment specified by OIT
- GaTech worked with OIT on Integration

System Integration
- OIT and OMAT performed testing

System Testing & Q/A

Production
Highway Maintenance in GDOT

• 18,000 centerline miles on the State Highway System
 – 46,000 Lane Miles
• 1,200 centerline Miles on Interstate
 – 6,000 Lane Miles on Interstate
• 10% Annual resurfacing/overlay
Pavement Evaluation for Rehab design

- Pavement evaluation for cost-effective rehab design
 - In-service and historical pavement surface distresses
 - Existing pavement structure
 - Material property and crack penetration

Existing pavement structure

Crack penetration

In-service pavement conditions

Historical pavement conditions

Coring

Pavement condition survey
Pavement Evaluation Processes

In the past...

Disadvantages

- Error-prone data recording
- Error-prone report compiling
- Inconsistent data quality
- Inaccurate location reference
- Tedious data utilization
- Difficult data reuse and data sharing
System Architecture/Solution

Field Data Collection

In-Office Data Transfer

Data Uploading

Other Maps
- GDOT base maps
- State routes
- Incomplete projects
- Completed projects
- Online base maps (e.g., Bing map, ESRI maps)

GIS-based Web Platforms

COPACES
GPS-based Mobile Data Collection

Accuracy is up to sub-foot.
In-Field Image Integration
Data Collected

Field-collected data has been uploaded to the central database:

107 projects since 2008
Including 731 cores and more than 4,000 pictures
Architecture of Web App

Online Sources

- ESRI Map Server
- Bing Map Server

GDOT Intranet

- Silverlight-Supported Client Browser
- ArcGIS Server
- Core Map
- GDOT Base Map
- Web Server (IIS)
- PE
- COPACES

Georgia Department of Transportation
Core Locations

Date: 2/23/2010 8:52:49 AM
Core ID: 1 **PI NUM:** 0007062
Department: PDB **County:** Fulton - 121 **Route:** COX
Condition: Poor **Material:** Asphalt **Underlying Material:** Graded Aggregate Base
Lane Location: Right Wheelpath **Distress Type:** Load Cracking **Distress Level:** 1
Crack Depth: 7 **Die:** 4 **Direction:** West
Route Type: 1 **Route No:** COX **Route Suffix:**
Sampler: NA **Comments:** Full depth

Date: 2/23/2010 8:52:49 AM
Core ID: 2 **PI NUM:** 0007062
Department: PDB **County:** Fulton - 121 **Route:** COX
Condition: Poor **Material:** Asphalt **Underlying Material:** Graded Aggregate Base
Lane Location: Right Wheelpath **Distress Type:** Block Cracking **Distress Level:** 1
Crack Depth: 9 **Die:** 4 **Direction:** East
Route Type: 1 **Route No:** COX **Route Suffix:**
Sampler: NA **Comments:** NA

Date: 2/23/2010 10:56:05 AM
Core ID: 3 **PI NUM:** 0007062
Department: PDB **County:** Fulton - 121 **Route:** COX
Condition: Good **Material:** Asphalt **Underlying Material:** Soil
Lane Location: Between Wheelpath **Distress Type:** None **Distress Level:** 0
Crack Depth: 0 **Die:** 4 **Direction:** Assumed S
Route Type: 1 **Route No:** COX **Route Suffix:**
Sampler: NA **Comments:** NA
Core Search

![Core Search Interface](image)

- **General Information in PEA system**
- **Pavement Evaluation Project Search**
- **Core Data Search**
 - **Search By**: PI Number
 - **Date From**: 5/2/2008
 - **To**: 5/3/2014
 - **Select**: 0007062
 - **Query**

- **PI Number**
- **Route**
- **County**
- **GDOT District**
- **ALL**
Online Core Data Input

Other than the data from PDB, other parties can contribute and easily share their data now.

Add core data using web (other offices/contractors)

GDOT designated engineer review and approve/reject new data
Historical Pavement Condition Data Extraction

- Define date range (when to when)
- Define project location (where to where) using GDOT LRS
 - RCLINK (10 digits: county, route type, route number, route suffix)
 - Milepoint from and to
Interactive tool was developed to visually locate projects without knowing RCLINK code
Historical Pavement Condition Data Analysis (cont’d)

Historical Pavement Conditions

County: Fulton-121 Route: 0401 MPt. From: 0.00 MPt. To: 5.30

Data Source: AO DO GO Regression Type: Exponential Regression

Threshold Rating: 70 Starting Year: 2004

Start Rating for Analysis (Red Line): 93 End Rating for Analysis (Blue Line): 71
Year of End of Service Life: 2011 Change in Rating Per Year: -3.2
Equation: $100 - 5.47e-186 \cdot e^{0.214 \cdot t}$ R-squared: 86.19 %
Summary: New Pavement Evaluation Processes

From now on...

Advantages
- Consistent data format and data quality
- Accurate location reference (Lon. & Lat.)
- GIS-based web application for data management, report generation, and data analysis
- Other end users can also share their own data
- Other data sources (e.g. COPACES) are integrated
Benefits

• Increase the return on investment (ROI)
 – Better managing the valuable and scarce data (coring data)
 – Better utilizing the existing data (COPACES and map services)
 – Easier data sharing (other than PDB, other users and contributors: Office of Maintenance, Office of Roadway Design, District & Area Offices, and Contractors & Consultants)

• Directly support GDOT’s engineering decision making on pavement rehabilitation and design
 – Improved data accuracy
 – Comprehensive data integration
 – Efficient data retrieval
 – Effective data analysis tools
Suggestions on Future Applications

- The GPS-based field data collection procedures and GIS-based web platform for data management, sharing and reporting can be extended to
 - Soil surveys
 - Testing management activities
 - Bridge foundation investigations
 - Construction audit activities
Suggestions on Future Enhancement

• Use new tablet computers and cloud computing for seamless synchronization between data acquisition and data utilization)
Thanks!

Q/A