Geodatabase design Considerations for Roads Asset Management System (RAMP)

Ali Roshannejad

March 19, 2008

GIS-T 2008
Agenda

- RAMP at a Glance
- RAMP A Historical Review
- Asset Registry (GIS) Requirements
- Roads Maintenance Business Background
- RM Existing Data Structure / Architecture
- Deficiencies of the Current Architecture
- Proposed Data Model
- Future Directions
Program streams include:
- Asset Registry & Condition Assessment
- Work Management
- Cost Management
- Performance Mgt.
- Asset Management Plans
RAMP
A Historical Review

- First Asset Registry for Streetlights in 2005.
- Implemented wireless access to GIS for Field Users via Citrix in 2007.
- Started Road Maintenance Asset Registry business requirements in 2007.
Asset Registry Requirements

• **Centralized** Asset Registry
• Capable of performing **Spatial Analysis** on each asset and between different asset types
• Being able to retrieve **Historical and Predicted** information for all the assets
• **Easy accessible** information by all the stakeholders
• Capable of working in sync with **Work Management** sub-system
• Offer **Improved Efficiency** and service level to the Citizens
Asset Registry design

To Date

- Enterprise GDB including Signals, Signs and Streetlights
- Each a “Feature Dataset” collection of related feature classes, related tables and Topological relationships
- Available in SDE layers for accessing at corporate level
- Enabled GIS data available from WM using “Editable Tables View”
A snapshot of GDB

and some Implemented GIS tools
Hansen View of Same Asset

Street Sign InfoViewer

Street Sign Asset Type

<table>
<thead>
<tr>
<th>Sign ID</th>
<th>1109034661</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Description</td>
<td>SIGN LOCATION, SLS</td>
</tr>
</tbody>
</table>

Location

<table>
<thead>
<tr>
<th>ID</th>
<th>BlockType</th>
<th>BackCode</th>
<th>Size</th>
<th>Sign Text</th>
<th>Bracket</th>
<th>StatusCode</th>
<th>Condition Rating</th>
<th>PrimIndic</th>
<th>Facing Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>32015</td>
<td>SG_SPECIAL</td>
<td>SPEC1</td>
<td>SG_18-</td>
<td>0</td>
<td>0</td>
<td>North East</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SignBlades

SignLocation
Asset Life History

- **Asset Life History**
 - **Sign ID**: 1106334561
 - **Asset Description**: SIGN LOCATION, EL3

- **Work Status**
 - **Scheduled Work Orders**: 0%
 - ** Unscheduled Work Orders**: 100%

- **Inspection Activity**
 - **Inspection Key**: No Information

- **Maintenance Schedules**
 - Asset 1106334561 has 0 Unit Maintenance Schedules

- **Inspection Schedules**
 - Asset 1106334561 has 0 Service Inspection Schedules of 0 total Inspection Schedules

- **Failures**
 - Asset 1106334561 has failed 0 times in 0 years of service with a mean time between failures of 0 days.

- **Warranties**
 - Asset 1106334561 has 0 active warranties.

- **Contacts**
 - Asset 1106334561 has 0 Contacts.

- **Associated Parts**
 - Asset 1106334561 has 0 Associated Parts.

- **Valuations**
 - Asset 1106334561 has a valuation in 0 books.
Design Work Order Plan View

WO# 181910
Signage at 22X and McKenzie Lk Bv SE
Sign Design Report

Design ID: 1014910 Prepared By: smuj

Version: USER_SHEET_MASTER Server: idx600 Issuance: 1

<table>
<thead>
<tr>
<th>LDC</th>
<th>SIGN CODE</th>
<th>SIZE</th>
<th>BRACKET</th>
<th>POST</th>
<th>TYPE</th>
<th>SIGN TEXT / COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1109329668</td>
<td>SG-11-196-06X78-79-M</td>
<td>60X78</td>
<td>SG-00-03</td>
<td>Regulatory</td>
<td>SHIELD SIGN ALREADY REMOVED IN FIELD</td>
<td></td>
</tr>
<tr>
<td>1109329508</td>
<td>SG-12-409-40X90-M</td>
<td>40X90</td>
<td>SG-40-09</td>
<td>Warning</td>
<td>INSTALL EXISTING POST (64RT) AND REPLACE WITH TYPE 8 POST (B2) (1.5M) THEN INSTALL NEW SIGN TO NEW POST, FN</td>
<td></td>
</tr>
<tr>
<td>1109329512</td>
<td>SG_SPECIAL_Speci Speci</td>
<td></td>
<td>AL-M</td>
<td></td>
<td>Truck</td>
<td>REMOVE BRIDGE MAX SIGN FROM OLD LOCATION</td>
</tr>
<tr>
<td>1109329516</td>
<td>SG-11-196-06X78-79-M</td>
<td>60X78</td>
<td>SG-12-210</td>
<td>Speed</td>
<td>INSTALL BRIDGE MAX SIGN, USING SIGN FROM OLD LOCATION ON SLG. INLINE WITH EXISTING LOCATION ON N/S OF RAIL LANE APPROX. 1/10 OF BOX OF BRIDGE RAILING/CONCRETE BARRIER, FN</td>
<td></td>
</tr>
<tr>
<td>1109329502</td>
<td>SG-00-03 Speci Speci</td>
<td></td>
<td>AL-M</td>
<td></td>
<td></td>
<td>INS 80K SPEED SIGN, ON SLG, AT END OF TAPER (APPROX. 44M W OF ISLAND TIP), FN</td>
</tr>
<tr>
<td>1109329510</td>
<td>SG_SPECIAL_Speci Speci</td>
<td></td>
<td>AL-M</td>
<td></td>
<td></td>
<td>INS 80K SPEED SIGN, ON SLG, AT END OF TAPER (APPROX. 44M W OF ISLAND TIP), FN</td>
</tr>
<tr>
<td>1109329520</td>
<td>SG-11-206-60X90-M</td>
<td>60X90</td>
<td>SG-40-01</td>
<td>Regulatory</td>
<td>REMOVE CAUTION BRIDGE SIGN AND POSTS FROM PRESENT LOCATION. MOVE SIGN AND POSTS TO 1/10 OF BRIDGE LENGTH. REMOVE PASSING PROHIBITED SIGN (CREWS TO DETERMINE IF OLD POSTS STILL IN USE)</td>
<td></td>
</tr>
<tr>
<td>1109329533</td>
<td>SG_SPECIAL</td>
<td></td>
<td>SG-00-01</td>
<td>Guide</td>
<td></td>
<td>REMOVE SIGN AND POSTS. NEW CAUTION "BRIDGE MAX" SIGN AND POSTS IN CURRENT LOCATION. MOVE SIGN AND POSTS TO 1/10 OF BRIDGE LENGTH. REMOVE PASSING PROHIBITED SIGN (CREWS TO DETERMINE IF OLD POSTS STILL IN USE)</td>
</tr>
<tr>
<td>1109329504</td>
<td>SG-11-60X60X12-M</td>
<td>60X12</td>
<td>SG-24-05</td>
<td>Regulatory</td>
<td>REMOVE SIGN AND POSTS. NEW CAUTION "BRIDGE MAX" SIGN FOR NEW LOCATION NORTH OF FIRE WITH EXISTING LOCATION</td>
<td></td>
</tr>
</tbody>
</table>

Installation:

1109329668

1109329508

1109329512

1109329516

1109329502

1109329510

1109329520

1109329533

1109329504
Livelink with Design PDF’s

Loaded Showing Status

Design Plans

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Functions</th>
<th>Document Status</th>
<th>Work Order Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SignGISReport 180589.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180589</td>
<td>2007-11-06 188</td>
</tr>
<tr>
<td>SignGISReport 180593.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180593</td>
<td>2007-11-06 190</td>
</tr>
<tr>
<td>SignGISReport 180656-12.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180656</td>
<td>2007-10-19 190</td>
</tr>
<tr>
<td>SignGISReport 180149.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180149</td>
<td>2007-11-09 171</td>
</tr>
<tr>
<td>SignGISReport 180182.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180182</td>
<td>2007-08-09 150</td>
</tr>
<tr>
<td>SignGISReport 180326.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180326</td>
<td>2007-11-08 131</td>
</tr>
<tr>
<td>SignGISReport 180226.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180226</td>
<td>2007-11-06 131</td>
</tr>
<tr>
<td>SignGISReport 180389.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180389</td>
<td>2007-11-08 188</td>
</tr>
<tr>
<td>SignGISReport 180742.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180742</td>
<td>2007-11-09 140</td>
</tr>
<tr>
<td>SignGISReport 180253.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180253</td>
<td>2007-11-08 140</td>
</tr>
<tr>
<td>SignGISReport 180972.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180972</td>
<td>2007-11-09 170</td>
</tr>
<tr>
<td>SignGISReport 181720.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>181720</td>
<td>2007-11-09 213</td>
</tr>
<tr>
<td>SignGISReport 180494.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180494</td>
<td>2007-11-11 142</td>
</tr>
<tr>
<td>SignGISReport 180517-18.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180517</td>
<td>2007-10-18 199</td>
</tr>
<tr>
<td>SignGISReport 180524-18.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180524</td>
<td>2007-11-01 176</td>
</tr>
<tr>
<td>SignGISReport 180529-18.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180529</td>
<td>2007-11-01 214</td>
</tr>
<tr>
<td>SignGISReport 180532-18.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180532</td>
<td>2007-11-01 238</td>
</tr>
<tr>
<td>SignGISReport 180778-22.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180778</td>
<td>2007-11-06 135</td>
</tr>
<tr>
<td>SignGISReport 180809-23.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180809</td>
<td>2007-11-06 269</td>
</tr>
<tr>
<td>SignGISReport 181068-26.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>181068</td>
<td>2007-11-06 134</td>
</tr>
<tr>
<td>SignGISReport 180507-17.pdf</td>
<td>Location - Design</td>
<td></td>
<td>Approved</td>
<td>180507</td>
<td>2007-11-01 254</td>
</tr>
<tr>
<td>test doc.txt</td>
<td>Location - Design</td>
<td></td>
<td>Draft</td>
<td>123</td>
<td>2003-04-04 1</td>
</tr>
</tbody>
</table>
Hansen Work Order Showing Link to Design Report in Livelink

Live Link Design Plan

http://documentmanagement/lm01/livelink.exe?func=ll&objid=38833277&objAction=Download
Upload Sign Tool and Navigation Interface

Upload Sign Photo Tool
Retrieving Photo from Livelink

There are 1 photos related to location [1109045050] in Livelink. Retrieving... done!

Loading / Viewing Asset Photos

Microsoft Office Picture Manager

Type a question for help

32700123.jpg
Temporal Capabilities

- History Layer for each asset
- Stores only changed attributes in related assets
- Follows versioning schema (User vs. Manager vs. Default)
- And that is not a replacement to “as-design” / “as-built” versions
Challenges Ahead

- All previously handled assets
 - Are “point” assets
 - Have a known street address (at least most of them)
 - Have a limited spatial relationships

- And most importantly, connectivity is not a concern.

- Roads Maintenance assets
 - Are “line” assets
 - Do not have “one” street address
 - Require several relationships among themselves and with other assets

- Connectivity is a major issue
Roads Maintenance
Business Background

• Road Maintenance (RM) is responsible for managing the integrity of the City’s road and sidewalk infrastructure through processes such as snow and ice control, street cleaning and street repair. Some of the services are initiated on service request calls and some others are done on a regular basis.
Roads Maintenance
Existing Conceptual Data Structure

- Linear Assets:
 - Road Segment
 Part of a roadway between two adjacent intersections
 - Backlane
 Unpaved (normally Gravel) at the backside of properties meant to provide access to utilities
 - Pathway
 Concrete or Asphalt paved for walking/running/bike riding

- Associated Assets (called Facility):
 - Sidewalks
 - Curb and Gutter
 - Fences
 - Dividing Medians
 - Traffic Islands
 - . . .
Current Architecture

- **Streets_P**: A non-graphical Oracle schema (data inventory)
- **RSI**: A GIS Application to create and update GIS segment features
- **ROADWAY**: an SDE feature class representing linear segments
- Several service applications:
 - SNIC
 - Street Cleaning
 - Surface Overlay
 - . . .
Streets_P Database ERD
Roadway Map snapshot
Segments Identification

• Each segment is known by a 10-digit unique ID number
• ID number is composed of “Section”, “Township”, “Range” and a sequence number

Section 29 24 01 0065 Township Range Sequence
Deficiencies of the Current Architecture

- Lack of a centralized data model
- Database is loosely coupled to GIS application
- Lack of many required business rules and triggers
- Unable to share with other assets (Streetlight, Signs, Signals, …)
- Incapable to communicate with Work Management sub-system of the Asset Management
Proposed Data Model

- Roadway, Backlane and Pathway Segments (same definitions as before)
- Backlane and Pathway segments enable to refer to Roadway Segments (Foreign Key)
- Introducing Aggregated classes ("Facility", "Intersection" and "Roadway") and Inheritance Relationships
- Introducing spatial relationships
- Use of the previous developed tools (CoC_Versioning and History_Layer)
- Introducing relationship to super, general common attributes required by the Asset Management architecture
Proposed Data Model

Aggregated Features

• Roadway is an example of Aggregated Feature (created as needed and not stored physically). A Roadway is composed of one or several segments, as shown selected
Proposed Data Model

Topological Structure

• Introducing Topological Rules to prevent errors in data entry.
• Two segments are not connected unless there is a common node available.
• All segments should be cleaned and built again to be structured topologically to present the Node-Arc-Node data structure.
• A new polygon class (Intersection) to identify where two or more Roadway segments meet.
Overall RM GIS Object Model
Future Directions

- IT Test and finalizing the Object Model
- Providing relationships with other assets (Signals, Signs and Streetlight)
- Data Clean-up (summer student job)
- Data Conversion and QA/QC
- Test the model while in operation and introduce changes (if needed).
Different Asset Inter-relations

- Is at intersection of

- Located at

- Located at

- Mounted on
Questions?

Ali Roshannejad
GIS Coordinator, Roads Dept.
City of Calgary
Ali.Roshannejad@calgary.ca
(403) 268-4730